HAXPES Lab System  | © Scienta Omicron
The HAXPES Lab offers a complete solution optimized for the study of the structural and chemical properties of bulk and/or interfaces of materials.

HAXPES Lab

A Window to the Bulk

PES XPS HAXPES

  • Robust laboratory-based HAXPES solution with a high flux monochoromated X-ray source of 9.25 keV
  • Measurement time scales comparable to synchrotron experiments
  • Access to deep core levels, buried interfaces and the bulk of the material

Scienta Omicron’s HAXPES Lab brings hard X-ray photoelectron spectroscopy (HAXPES) directly to 
your local laboratory. With the HAXPES Lab, you can access the bulk sample properties by investigating deep core level electrons from the material, without the need for synchrotron end stations. Utilizing world class technology and expert engineering, the HAXPES Lab sets the standard for laboratory based high energy X-ray photoelectron spectroscopy.

HAXPES Lab is designed to allow hard X-ray photoelectron spectroscopy (HAXPES) measurements in standard lab environments. The instrument offers the unique possibility to investigate bulk properties of various materials, analyse buried interfaces and access deep core levels. HAXPES Lab is a convenient to use turnkey UHV system which includes a 9.25 keV monochromated Ga Liquid Metal X-ray Source and a EW4000 energy analyser allowing for analysis in the full kinetic energy range up to 9252 eV. 

Contact Us Email: info@scientaomicron.com

More Information

Study Bulk and Interfaces in your Home Laboratory

Photoelectron spectroscopy is a well-established tool for analysing a wide range of chemical and material properties. Traditional photoelectron spectroscopy instruments employ low energy X-ray sources limiting the kinetic energy of the photo-emitted electrons. Low kinetic energy electrons have short inelastic mean free paths (IMFP), confining analysis by traditional instruments to the top several nanometers of a material‘s surface. HAXPES, using higher kinetic energies, greatly extends the analysis depth.

While HAXPES measurements have been successfully deployed at synchrotrons, obtaining access to the required end stations is a significant challenge. The HAXPES Lab solves this problem and serves as a complete analytical tool by bringing cutting edge HAXPES directly to the end user’s laboratory. Complimentary soft X-ray sources and charge neutralisation are available. A comparison between different lab sources highlights the information depth advantage the Ga source provides. Information depth is defined as the region in which 90 % of the total signal originates. Beyond this advantage the monochromated Ga X-ray source provides higher flux than alternative hard X-ray lab sources.

Proof of Principal Measurements

The higher energy of the Ga Kα X-rays is exploited by the high intensity of the Excillum Ga liquid jet source provides a wider energy range than standard Al K Kα X-rays and deeper core levels can be reached, and at the same total instrument energy resolution as a standard monochromatized XPS instrument, allowing for high resolution HAXPES measurements in the home laboratory.

The higher penetration depth of Ga Kα X-rays is exploited by the high intensity of the Excillum Ga liquid jet source providing the greatest depth sensitivity from any laboratory hard X-ray system. As shown in the figure, the metal silicon peak is still visible through 50 nm of SiO2. Chemical information from deeper into the bulk than possible from Al or Cr based sources is possible in the HAXPES Lab with efficient time scales. 

Forefront of Materials Research

The HAXPES Lab places the user at the forefront of materials research with its novel analytical capabilities. Unprecedented measurements of bulk electrical and chemical properties are now possible. Users can easily execute a chemical analysis of real world samples without the need for destructive and artifact inducing surface preparation steps.

This capability is critical for many high impact measurements, including properly analysing buried layers in energy harvesting devices and batteries. Shown in Figure is a deep core Ti1S spectra from a single crystal rutile sample with a binding energy of 4969.7 eV. This measurement was acquired by HAXPES Lab in 35 minutes.

A real-world HAXPES Lab example analysis is shown in Figure on a complex oxide transistor stack. This structure exploits the presence of a 2D electron gas at the interface between the In2O3 and ZnO. Al 1s peaks are measurable, even when the Al is buried 33 nm deep. Core level Zr and In peaks, unmeasurable with standard XPS, are easy to find. These measurements were taken over 2-4 hours, thus proving the practical capabilities of the HAXPES Lab.

Results

Characterization of Buried Interfaces Using Ga Kα Hard X-Ray Photoelectron Spectroscopy (HAXPES)

Characterization of Buried Interfaces Using Ga Kα Hard X-Ray Photoelectron Spectroscopy (HAXPES)

2024

The extension of X-ray photoelectron spectroscopy (XPS) to measure layers and interfaces below the uppermost surface requires higher X-ray energies and electron energy analysers capable of measuring higher electron kinetic energies....

Near-Surface Analysis of Magnetron Sputtered AlCrNbYZrNx High Entropy Materials Resolved by HAXPES

Near-Surface Analysis of Magnetron Sputtered AlCrNbYZrNx High Entropy Materials Resolved by HAXPES

2024

Hard X-ray photoelectron spectroscopy (HAXPES) was used to perform a non-destructive depth profile of AlCrNbYZrNx (x = 0 to ∼50 at.%) thin films. The outermost native oxide of the pristine thin films contained the highest coordination...

Electron-donating amine-interlayer induced n-type doping of polymer:nonfullerene blends for efficient narrowband near-infrared photo-detection

2022

Inherently narrowband near-infrared organic photodetectors are highly desired for many applications, including biological imaging and surveillance. However, they suffer from a low photon-to-charge conversion efficiencies and utilize...

The Role of SnF2 Additive on Interface Formation in All Lead-Free FASnI3 Perovskite Solar Cells

2022

Tin-based perovskites are promising alternative absorber materials for lead-free perovskite solar cells but need strategies to avoid fast tin (Sn) oxidation. Generally, this reaction can be slowed down by the addition of tin fluoride...

Reference Systems

Downloads

HAXPES Lab: A Window to the Bulk

09/11/2023 1.98 MB

Scienta Omicron‘s HAXPES Lab brings hard X-ray photoelectron spectroscopy (HAXPES) capability directly to the local laboratory environment. This novel system probes bulk sample properties and accesses deep core level electrons via photoelectron spectroscopy (XPS) without the need for a synchrotron end station. Using world class technology and expert engineering, the HAXPES Lab sets the standard for laboratory based high energy photoelectron spectroscopy.

PEAK Brochure

13/09/2023 3.19 MB

PEAK is designed to control acquisition of photoelectron spectra with Scienta Omicron analysers. With its modern software architecture, PEAK offers improved performance for data acquisition, workflow, and live visualisation of data. The modular design and the modern network-based application programming interface (API) facilitate integration of additional equipment as well as full integration of the analyser in external control systems.

EW4000 Brochure

13/09/2023

The EW4000 electron analyser is a state-of-the-art and widely used electron analyser for HAXPES. It is also one of the key parts is Scienta Omicron’s HAXPES Lab. Expanding the parallel angular detection range to 60° in the full range from UPS via XPS to HAXPES gives great possibilities for high transmission measurements as well as novel Standing Wave and XPD experiments.

Services & Spare parts

Find more Spare-parts