Product Launch

DFS30: Stay Focused, Save Time

Electrostatic 3D Focus Adjustment Technology

Product Details

Result of the Month (ROM) May 2022

Atomic Insight into the Interfacial Effect on the Molecular Solvation

ROM

Materials Innovation Platform (MIP)

Accelerating the Pace of Discovery

MIP

News Flyer Spring 2022

Welcome to the Scienta Omicron Newsflyer for Spring 2022

Newsflyer

Accelerating Materials Innovation 

Electron Spectroscopy

Scanning Probe Microscopy

SPM Component  | © Scienta Omicron

Thin Film Deposition

Thin Film Deposition Component  | © Scienta Omicron

Scienta Omicron Newsflyer Spring 2022

Welcome to the Scienta Omicron Newsflyer for Spring 2022 with an opening message from our new CEO Mr. Henrik Bergersen on the importance of filling customer needs and providing values to our customers. The BAR XPS for instance addresses the biggest challenge in APXPS, measuring at industrial relevant pressures. Read more about the BAR XPS break-through results at world record pressures; EVO Compact – the MBE System for 2D material research; new DFS30 analyser with unique electronic alignment capability for µARPES; successful analyser PEAK software upgrade and integration with the control system at SPring-8 synchrotron in Japan; and high resolution qPlus imaging with CO terminated Tip using the INFINITY SPM Lab at the Aix-Marseille University.

Sample Manipulators

Open and Closed Cycle Sample Manipulators

When aiming at high experimental energy resolution for ARPES measurement, it is crucial to achieve ultra-low sample temperatures to quench thermal broadening. This is possible with state-of-the-art cryo manipulators reaching sample temperatures from < 3.5 K and featuring up to 6 fully motorized axes for a large range of movements. The manipulators are available as open and closed cycle. Open cycle manipulators reach lower temperature specifications and are rapidly cooled down from room temperature to 10 K in 15 min. The low He consumption below 1 l/h at ultimate temperature and the possibility to operate with liquid nitrogen at higher temperatures ensure a low operating cost. Closed cycle manipulators have no He consumption providing unlimited holding time.

Result of the Month (ROM), May 2022

Atomic Insight into the Interfacial Effect on the Molecular Solvation

In this work, Duanyun Cao & Jing Guo et al. probe the microsolvation of methanol in water on copper surfaces, using qPlus-based nc-AFM with a CO-terminated tip at 4.8 K. The configurations of water and methanol molecules in the complexes, including the detailed OH directionalities and H-bonding networks could be identified unambiguously by the height-dependent AFM images in combination with theoretical simulations. They demonstrate the excellent cooperativity between the water and methanol molecules through hydrogen-bonding in the formation of ordered clusters on both Cu(110) and Cu(111) surfaces, which are composed of pentagonal and hexagonal rings. All the experiments were carried out with an ultra-high vacuum Scienta Omicron POLAR-STM/AFM combined system operated at 4.8 K using a qPlus sensor equipped with a W tip.

Research News

Scientists Solve the Mystery About the Active Phase in Catalytic Carbon Dioxide Reduction

An international research team led by researchers of Stockholm University has for the first time been able to study the surface of a copper-zinc catalyst when carbon dioxide is reduced to methanol. The results – obtained at DESY´s brilliant light source PETRA III – are published in the scientific journal Science. A better knowledge of the catalytic process of methanol synthesis and the possibility of finding even more efficient materials opens the door for a green transition in the chemical industry.

Research News

Magnetism in Two Dimensions Goes “Easy-Plane”

Researchers at the Max-Planck Institute of Microstructure Physics in Halle, Germany, in collaboration with the Helmholtz-Zentrum Berlin, Germany and the ALBA Synchrotron, Barcelona, Spain, have discovered the first two-dimensional ferromagnetic system with a special property known as “easy-plane” magnetic anisotropy. This achievement was the result of fabricating a single atomic layer of chromium tri-chloride on a graphene substrate over a large area, and its investigation with highly sensitive in-situ magnetic measurements. What is special about this type of easy-plane magnet is that it could support the transport of electron spins without consuming any energy, and so lead to a new generation of highly energy-efficient, 2D spintronic devices.

New Product

PEAK: Electron Spectroscopy Control and Acquisition Software

PEAK is designed to control acquisition of photoelectron spectra with Scienta Omicron analysers. With its modern software architecture, PEAK offers improved performance for data acquisition, workflow, and live visualisation of data. The modular design and the modern network-based application programming interface (API) facilitate integration of additional equipment as well as full integration of the analyser in external control systems.

Services Training

MATRIX Programming Training

MATRIX offers powerful capabilities with its rich programming interface. Though MATRIX’s functionality is well documented, even experienced programmers may appreciate support to explore the aspects and procedures of the software that are less obvious. This course is intended for people already experienced in using MATRIX with at least basic programming skills who want to take their SPM to new heights.

About Us 

Scienta Omicron is a leading innovator in Surface Science and Nanotechnology. At our technology centres in Uppsala, Sweden and Taunusstein, Germany we develop and produce high-tech instruments. Our instruments support top researchers globally and are serviced by our four regional hubs in USA, China, Japan and Germany.

We provide state of the art instruments in Electron Spectroscopy, Scanning Probe Microscopy and Thin Film Deposition. Focusing on the race for new unique materials and solutions, in areas like – smarter batteries, next generation electronics, quantum technologies, solar energy, intelligent sensors and advanced materials, Scienta Omicron enables development of tomorrow´s materials.

THE SCIENTA GROUP: One Group, Two Leading Brands

Since 1983 the combined companies, including Scienta Omicron and Scienta Envinet (former Scienta Sensor Systems and Envinet GmbH respectively) that make up the Scienta Scientific Group have been leading the development of ultra high vacuum research and analysis equipment in the fields of Surface Science, Material Physics, UHV technology and Radiation Detection, resulting in scientific breakthroughs, Nobel Prizes and outstanding industrial equipment.