EW4000 Electron Analyser  | © Scienta Omicron
The state-of-the-art analyser for HAXPES experiments, EW4000.


Outstanding Electron Analyser for HAXPES Measurements


  • 60° wide angular mode
  • Angle resolved kinetic energy range up to 10,000 eV
  • Intensity optimized transmission mode
  • Real time image correction
  • 40 mm working distance

The EW4000 electron analyser is a state-of-the-art and widely used electron analyser for HAXPES. It is also one of the key parts is Scienta Omicron’s HAXPES Lab. Expanding the parallel angular detection range to 60° in the full range from UPS via XPS to HAXPES gives great possibilities for high transmission measurements as well as novel Standing Wave and XPD experiments.

Traditional XPS measurements are typically conducted with photon energies below 1.5 keV. As a result, the generated photoelectrons have relatively low kinetic energy and their escape depth becomes limited to a few nanometres from the surface. This makes XPS an extremely surface sensitive technique. In order to study bulk samples, buried interfaces, and in-operando devices one has to increase the escape depth. HAXPES achieves this by using higher kinetic energies greatly extending the analysis depth.

Besides a light source providing high energy photons, HAXPES requires an analyser that can handle the emitted high energy electrons. This requires an analyser design with strong electrostatic lenses with controlled electron trajectories, capable of sustaining stable high voltages, and high signal transmission. All these capabilities are provide by the EW4000 analyser.

More Information

Detection System & Lens Modes

HAXPES makes use of high photon energies which is accompanied by reduced photoelectric cross sections. Efficient measurements for such low cross sections require a modern detection system with low noise and high signal to noise ratio. Our 2D MCP/digital detector system combines low noise and high signal to noise with large dynamic range allowing to clearly resolve weak features next to strong signals.

In combination with the EW4000 extreme wide angle lens, the 2D detection system allows for ARXPS and even HAXPES with 60° parallel detection. Additionally, a higher angular resolution mode with 44° parallel detection as well as a transmission mode for maximum intensity are included.

Image Correction Software

The extreme wide angle acceptance of the EW4000 puts new demands on the data acquisition software. A new real time image correction functionality has been implemented in the software to support high resolution wide range swept mode measurements in angular mode. The image correction routines are very fast and do not influence the acquisition speed. The data storage overhead is as fast and unnoticeable as before.

EW4000 Variants

Depending on the technical requirements, the EW4000 is available in two versions with different maximum kinetic energies of 6 kV and 10 kV, respectively. Besides the maximum kinetic energy and specially configured electronics, the technical specifications are the same.

EW4000 UPS Upgrade

As an additional option, the EW4000 can be equipped with an UPS upgrade. This upgrade enables UPS measurements to be conducted in transmission mode with a routine energy resolution as good as 1.8 meV. In combination with ± 30° lens acceptance angle of the EW4000 lens this option offers a high transmission and detection efficiency.


Energy resolution

< 40 meV FWHM at 6 kV

< 100 meV FWHM at 10 kV

Transmission mode energy range

5 eV – 10 000 eV

Angular modes

± 22°, ± 30°

For full specifications and more information about product options, please do not hesitate to contact your local sales representative.

Angular mode energy range

100 eV – 10 000 eV

Deflection mode energy range


Deflection mode Spin scan


Operating pressure

< 10-5 mbar

Mounting flange

NW 200 CF


Inelastic Background Modelling Applied to Hard X-ray Photoelectron Spectroscopy of Deeply Buried Layers

Inelastic Background Modelling Applied to Hard X-ray Photoelectron Spectroscopy of Deeply Buried Layers


We investigate layers of an organic LED material buried deeply below up to 200 nm of organic material using HAXPES (hv > 9 keV). To gain information from deep below the surface using photoelectron...

Experimental Setup Combining In Situ Hard X-ray Photoelectron Spectroscopy and Real-Time Surface X-ray Diffraction for Characterizing Atomic and Electronic Structure Evolution During Complex


We describe the next-generation system for in situ characterization of a complex oxide thin film and heterostructure growth by pulsed laser deposition (PLD) using synchrotron hard X-rays. The system consists of a PLD chamber mounted...

Element- and Momentum-Resolved Electronic Structure of the Dilute Magnetic Semiconductor Manganese Doped Gallium Arsenide


The dilute magnetic semiconductors have promise in spin-based electronics applications due to their potential for ferromagnetic order at room temperature, and various unique switching and spin-dependent conductivity properties. However,...

A Novel Laboratory-Based Hard X-Ray Photoelectron Spectroscopy System


Hard X-ray photoelectron spectroscopy (HAXPES) has seen continuous development since the first experiments in the 1970s. HAXPES systems are predominantly located at synchrotron sources due to low photoionization cross sections necessitating...

Reference systems


EW4000: Electron Spectrometer

1.2 MB

The Scienta Omicron EW4000 opens new directions of science. Where previous Scienta Omicron spectrometers have been a revolution to ARPES, the EW4000 goes one step further. Expanding the parallel angular detection range to 60° gives great possibilities for high transmission measurements as well as novel Standing Wave and XPD experiments.